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ABSTRACT

In this paper we study the class of augmented balanced incomplete block

designs, which are used for comparing a control treatment with a set of test

treatments. Under the A-criterion we establish a condition that enables us

to determine the most efficient augmented design and we suggest some methods

to compute a lower bound for the efficiency of these designs. For 3 < k < 10,

v > k we list the parameters of the most efficient designs with a lower bound

for their efficiency or, if known, mention their optimality.
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1. INTRODUCTION

Almost 30 years ago Cox [2] suggested that in comparing a control with a set

of test treatments in a proper block design, a good procedure would be to construct

a Balanced Incomplete Block Design (BIBD) based on the test treatments, followed by

augmenting each block of this BIBD with one or more replications of the control.

It is our goal in this paper to investigate this claim and study the efficiency

of designs constructed in this way for the special case that the optimality cri-

terion is the so-called A-criterion.

The remainder of this section will be used to introduce some of the termi-

nology and assumptions and give a more detailed description of our problem.

We want to compare the effect of a treatment, called the control and denoted

by 0, with those of v other treatments, called the test treatments and denoted

1,.. .,v. To achieve this objective we assume that we can make bk observations,

divided over b blocks of size k each. The model that we will assume is

Yijk +Ti a i + Eijk'

where 0 < i < v, 1 < j < b, I < k < nij. Y ik is an observation in block J

using treatment i. The index k distinguishes between these observations if there

is more than one, say nij , replications of treatment i in block j. (If

nij = 0 then there is no observation of the form Yijk.) The other parameters

in the model are called the general mean (p), the effect of treatment i (Ti) ,

the effect of block J () and the error term (cijk). The assumptions on the

error terms are that they have mean 0, variance a2 and that they are uncorrelated.

The objective of the experiment is to estimate the test treatment - control

contrasts T- r0 i l,...,v. We assume that this is done by using the least
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square estimates, which we will denote by i- r0 " In order for all these

contrasts to be estimable it is necessary that the used design is connected.

We will therefore use the notation D0(vb,k) to denote the class of all

connected block designs with b blocks of size k each and based on v test

treatments and a control. Our task is thus to select a design from Do(v,b,k)

and use this to perform the experiment and obtain estimators for T - to from

it. In selecting such a design we obviously need a criterion that tells us,

in terms of the estimators ^i - T0 derived from it, whether a design is

(comparetively) good or bad. In this context two criteria have prevailed in the

literature. For one of them, MV-optimality, we refer the reader to [5]. The

other one, A-optimality, is defined as follows:

A design dI c D0 (v,b,k) is said to be A-better than

d2  D(V,b,k) if Tr(M IdI) < Tr(M d), where M and

1 2 1
M d are the information matrices for the contrasts

Ti - Tot i = l,...,v, corresponding to d1  and d2

respectively. The design d is called A-optimal if

the above inequality holds for any d2 E D 0(v,b,k).

Obviously any class D0(v,b,k) possesses at least one A-optimal design. The

only difficulty is how to find one. Several papers have made a contribution

towards a partial solution of that problem (e.g., [3], [4], [6], [7]). The

most general result in this direction is due to Majumdar and Notz [6]. To

state it we will first need two definitions.

' ' " ' " " • m |. .... . i. .... . .........,i 
-

-,... .
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Definition 1.1 (Bechhofer and Tamhane [11): A design d E D 0 (v,b,k) is

called a Balanced Test treatment Incomplete Block Design (BTIBD) if

1. d is incomplete, i.e., no block contains all v + 1 treatments

b
2. with the notation X i E .n i # i l < V, it

1 2 iii 1 2-

holds that there are constants X 0and X 1such that

X 1=XO 1 < i < v, and X~ = X9 1 < 1 1 i <V.

Definition 1.2: A design d E D 0(v,b,k) is called a BTIB(v,b,k;t,s) if

* 1. d is a BTIBD which is binary in the test treatments

* 2. there are s blocks in d which contain exactly t + 1

replications of the control, while the remaining b - s

blocks contain exactly t replications of the control.

* The result by Majumdar and Notz [6], can now be stated as:

Theorem 1.1: If V > k > 3 then a BTIB(v,b,k;t,s) is A-optimal in D 0(v,b,k)

if

g(t,s) = min{g(x,z) :(x,z) e Al

where g(x,z) :=(v-l) 2(bvk(k-l) - (bx+z)(vk-v+k) + bx 2+ 2xz + z)-

* 2 -
+ ((bx+z)k - (bx +2xz+z))

* and A :- {(x,z): x E f0,l,-. ,[k/2]-1}, z c 10,1,.. .,b)

and z > 0 if x -01

([1 denotes the largest integer function).
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Although a very general result that can be used to find A-optimal designs in

many classes of parameters, there are even more classes that remain unsolved by this

result, since the needed BTIB(v,b,k;t,s) does not exist. Our apparent inability

to determine an A-optimal design for the majority of parameters v, b and k

leads us to the consideration that we should perhaps be less demanding and settle

for a design that, though possibly not A-optimal, performs well under the A-criterion.

We therefore introduce the following definition.

Definition 1.3: The efficiency E(d) of a design d E D0(v,b,k) is defined

as

min Tr(Mdl)

, dD 0 (v,b,k)

Tr(Md)

We will attempt to find designs with an efficiency close to one. One possible

approach could be to search for the best design with respect to the A-criterion

in the restricted class of all BTIBD's for given v, b and k and hope that this

design has a high efficiency in D0 (v,b,k). Although this design will, for most

parameters, indeed have a high efficiency, as will follow from our results, there

are at least two difficulties with this approach. The class of all BTIBD's with

fixed parameters is, generally, still a large class of designs, leaving us with a

difficult combinatorial problem. In addition to this, very little is known as

of yet, about the existence and construction of specified BTIBD's.

Our approach is therefore to look for the best designs in a subclass of the

BTIBD's, and well that of the augmented BIBD's, i.e., those designs as suggested

by Cox. Existence and construction questions are in this class equivalent to those

v' . . *.. . - *- .- . .. -. . . * . . . ....
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of the corresponding BIBD's, and the literature on that subject is quite exten-

sive. Moreover since the class is significantly smaller than that of the BTIBD's

it becomes easier to compare the performance of its members and select the best

one. The only fear that one might have, though it will prove to be unfounded, is

that the efficiency of the best design in this class is not as high as desired.

In section 2 we will determine the best augmented BIBD in D0 (v,b,k),

while section 3 will discuss the efficiencies of these designs.

2. DETERMINATION OF THE BEST AUGMENTED BIBD's.

Throughout the remainder of this paper we will assume that v > k > 3, the

conditions as in Theorem 1.1. For a discussion of the case k = 2 the reader is

referred to [3]. An augmented BIBD is in our notation just a BTIB(v,b,k;t,o),

and its information matrix and thus its performance under the A-criterion will,

for fixed v, b and k, be completely determined by t. Thus our problem is

to find the optimal t. Before stating the main result of this section we

introduce the following function f(t), defined on the set of nonnegative integers

[0 if t =0

f(t)

L 1 2
t(t+l) [(k-t-l) + t7 if t =1,2...

. ..

16. . ,... *.:.. t.***..-.*.'**... . S



-6-

Theorem 2.1. Let t0 > 1. Then a BTIB(v,b,k;to,o) is A-better than any other

BTIB(v,b,k;t,o) if

(2.1) f(tO) < v < f(t0 - 1).

Before giving a proof we would like to make three remarks:

Remark 1: The reader should notice that condition (2.1) is completely independent

of b. The only way in which b plays a role is in the question of existence of

the desired BTIB(v,b,k;t 0 ,o).

Remark 2: Notice also that for any fixed v and k there exists a positive

integer t0  such that (2.1) is satisfied.

Remark 3: There are instances in which the BTIB(v,b,k;to, 0) from the Theorem

is actually A-optimal in D0 (v,b,k). It is shown in [7] that this is the case

if

1 [(k-to-l) 2 + 1] <_ v < -- (k-t0)2

t o  
t o

0 0

A useful lemma for the proof of Theorem 2.1 is the following:

Lemma 2.1: Let g(x,z) be the function as defined in Theorem 1.1, with the

convention that g(0,0) = oo. If

g(t0,O)< min{g(t0-1,O)9 g(t-0+0,0)

then

g(t0,O) = min{g(t,0) : t = 1,...,k-1}

4

: ," " ¢ ' ', ' - 'J '' " ,",.'' '" . . ".""" .. . . . -"* . .-.- 2 ". . ''''".""**'""- "". . . .",, .*,, , ,, ,- " . , j , . ' , " - - , - .:,-,i . ' " ' ' .
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Proof: A simple evaluation gives

g(t,O) =bkt2 
+ 1

b(k-t) v(k-l) - t t)

* Hence lim g(t,O) = lim g(t,O) = co, which implies that

t+O ttk

d*(2.2) - - g(t,O) = 0

has a solution on the interval (O,k).

Similarly, since lim g(t,O) lim g(t,O) = -co, it follows that (2.2) has
t~k ttv(k-l)

a solution on (k,v(k-l)).

Finally, since lim g(t,O) = -c and lim g(t,O) = 0 while g(t,0) > 0

k-l to t-o

if t -i it follows that (2.2) has a solution on (-w, 0). It is obvious

that (2.2) has at most 3 solutions, so that we can conclude that there is a unique

solution on (0,k). If we call this solution t1 we know that g(t,O) is de-

creasing for 0 < t < t1  and increasing for t1 < t < k. From g(toO" < g(t0-l,0)

it follows that t > tO - 1, while g(to,O) < g(t0+l,0) implies that tI < t + 1.

The conclusion of the lemma is now obvious. ]

There are two other lemmas which are useful for the proof of Theorem 2.1.

Lemma 2.2: If f(t) > k for t > 1, then v > f(t) if and only if

g(t,O) < g(t+l,0).

Proof: From f(t) > k we obtain

t(t+l)k < (k-t-l) 2 + t,

or equivalently



k - (t+l)(t+2)k + (t+1) 2 + t 0.

As a quadratic equation in k the roots of the left-hand side are k 1 and

k = t2 + 3t + 1. Since by assumption k > 3, it follows that

(2.3) k > + 3t + 2.

* The statement g(t,O) < g(t+l,0) is equivalent to

2 _12

ore q

* where

q(v) =t(t+l)(k-l)v 2 _ ((k-l)((k-2t-1) 2 + 2t(k-t)) - (k-2t-I)t(t+l))v

- (k-2t-3)(k-t)t + (k-2t-l) (k-t-1)(t+l)

Since q is a convex function of v, to prove the lemma it suffices to show that

*1. q(l) < 0,

2. q t 1 ((k-t-l) 2 + t-1)) < O,

3. q C(t+l) ((k-t-l)2 + t)) > 0,

under the assumption that k > t + 3t + 2. Evaluating q(l) and making some

simplifications gives

q(l) = -(k-1) 3 + (4t+l)(k-l)2  (5t2+3t)(k-i) + 2t 2(t+l)

2 4 3
< -(t -t)(k-1) - (St +16t +12t +3t) < 0,

where we used (2.3). This shows 1. Also

V.
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S( 2(k-t-) + t - 1)J 1 (-(k-1)(k-2t-1)(k-t2

t(t+l)

+ k - 1 - (k-2t-l)t(t+l)(t 2+t+l)) < 0,

again using (2.3). Hence 2. follows.

yqCi )((k-t-l)2 + t)) = (k-2t-1)(k-t2-t-l) > 0 by (2.3). This

shows 3. and concludes the proof of Lemma 2.2.

Lemma 2.3: If t is the smallest positive integer such that f(t) < k then

g(t,0) < g(t+l,0).

Proof: Notice first that the existence of a t as in this lemma is obvious. We

have the inequality
I ~ f(t) < k < f(t-l),

which is equivalent to

(2.4) t 2 + t < k < t 2 + 3t + 1.

With q(v) as in the proof of Lemma 2.2 we have to show that, assuming (2.4),

q(v) > 0 for any v > k. Thus, again using the convexity of q(v), it suffices

to show that

1. q(k) > 0,

2. q(l) < q(k).

To show this we will distinguish between two cases.

Case 1: t = 1.

Case 2: t > 2.

. ., !," "..........-....
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Case 1 is easy, since (2.4) tells us that 3 < k < 5 and

q(k) = -k4 + 7k3 - 8k2 - 13k + 19, which is indeed positive for 3 < k < 5. This

shows 1 for this case. Also q(l) < 0 < q(k) is easy to verify for this case.

So let us turn to Case 2, t > 2.

After some simplification we obtain

q(k) = -k4 + (t2+3t+3)k3 - 2(t+l)2 k - (2t 3+6t 244t+l)k

+ 4t3 + 9t2 + 5t + 1.

It can be shown that considering this as a function of k on the interval

[t 2+t, t 2+3t+l] we have a concave function (use t > 2), implying that the

minimum value occurs at one of the endpoints k = t2 + t or k = t2 + 3t + 1.

Evaluating at these two points gives the values

71 +7 6  5 4 3 2
2t + 7t + 5t -9t -llt + 2t + 4t + I

and

%2

2t 2(t+l)

respectively. Since the latter one is the smaller of the two it follows that

q(k) > 2t 2(t+l) > 0 under the assumption of (2.4). This shows 1.

For 2. we see

q(l) = -(k-l) 3 + (4t+l)(k-l)2 - (5t 2+3t)(k-l) + 2t 2(t+l)

<-(k-)((k-l-(2t+l))2 + t2 t 1) + 2t2(t+l)

* 2
< 2t (t+l) < q(k).

This concludes the proof of Lemma 2.3. 0

: .. . - -..-. ,"..- ... . . . . . . , . . . . . .
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Weaponed with these three lemmas we are ready to prove Theorem 2.1.

Proof of Theorem 2.1: First observe that if d is a BTIB(v,b,k;t,o), then

a -Tr(M d kv g(t,O).

Hence we have to show that

g(to,0) = min{g(t,O), t 1,... k-1}.

By Lemma 2.1 it suffices to show that

(2.5) g(toO) < minfg(t0-1,O), g(t0+1,0)).

We know that

(2.6) f(to) < v < f(t0-).

If f(to) > k, (2.5) follows immediately from (2.6) and Lemma 2.2.

If f(t0) < k, then since v > k it follows from (2.6) that to  is the

smallest positive integer t with f(t) < k. Hence by Lemma 2.3 we obtain

g(to,O) < g(t0+l,0). Since v < f(t0-l), Lemma 2.2 gives us that

g(toO) < g(t0-l,O). Combining these two gives that (2.5) holds and concludes

the proof of Theorem 2.1.

There are two different approaches in which Theorem 2.1 can be used. The

first would be to specify the class D0 (v,b,k) from which we like to choose a

design. Then we have to find the unique value of t for which

f(t) < V < f(t-l).

U

al -*
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The desired augmented BIBD will exist if a BIBD with b blocks of size k - t based

on v treatments exists. A disadvantage of this approach is that the existence

question is answered at the very end.

This can be avoided if we start with a BIBD, say with b blocks of size k

each based on v treatments, and try to augment this by t replications of the

control. This would be a design in Do(v,b,k+t), and it is the best augmented

BIBD in this class if

(2.7) ((k-l) 2 + t) < v < 1 (k2 + t - 1)(2.7)t (t+l) -- t(t-l)

where for t = 1 the upper bound is a.

It is easy to show that there is always at least one value of t that satis-

fies this inequality, and thus that any BIBD can be embedded in an augmented BIBD

which is the best augmented BIBD in its class.

Example 2.1: If we start with a symmetric BIBD based on 11 treatments and block

size 5, it is easy to verify that (2.7) is satisfied for t = 1 and t = 2.

Hence a BTIB(ll,II,6;I,0) is the best augmented BIBD in D0 (11,11,6), while a

BTIB(II,II,7;2,O) is the best augmented BIBD in D0 (11,11,7). In addition it can

be shown that .991 and .985 are respective lower bounds for their efficiencies.

We return to this in the next section.

A disadvantage of this second approach is that we do not know a priori what

the block size is of the design that we will eventually wind up with.

.-.
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3. BEST AUGMENTED BIBD's AND LOWER BOUNDS FOR THEIR EFFICIENCY FOR 3 < k < 10.

The efficiency of a design in its class as given in Definition 1.3 would not

be very useful if we could not obtain a good lower bound for the expression in

the numerator.

One such lower bound can easily be shown to be the following:

mi -2 Tr(Md1) > kv min{g(x,z) : (x,z) C A},
dED(v,b ,k)

where g(x,z) and A are as defined in Theorem 1.1. This bound could indeed

be used to obtain lower bounds for the efficiency of a design. It is however

slightly easier for computational purposes, to use the following inequalities,

which can be found in t7].

2

(3.1) If v > (k-l) + I then min{g(x,z) (x,z) c A) > g(O,zo)

where z = bk (v-l)(v+l) 2 (V+l)
(v+l) (v-3)

1 2 (k2 2

(3.2) If 1((k-2) + 3) < v < (k-2) then

min{g(x,z) : (x,z) E A} > g(l,z1 ), where

1/2

z I  b(k-l) (k-l)(k-2)(v-l)((k-3)((v+l)(k-1)-2)) - (k-3)(v+k-3)((v+l)(k-l) -2)I (k-S) ((v+l) (k-1)-2) ((v-3) (k-3) - 2)

Using these bounds we compiled the following list of best augmented BIBD's with

their efficiencies. In each case a BTIB(v,b,k;t,o) is the best augmented BIBD

provided that a BIBD with b blocks of size k - t based on v treatments

exists. A lower bound for the efficiency is given, except in those cases where

the design is known to be A-optimal.
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THE BEST BTIB(v,b,k;t,o) AND A LOWER BOUND FOR ITS EFFICIENCY E.

k =3: Take t =1 for any v >3.

(i) If v = 3 or 4 the design is A-optimal.

(ii) if v, > 5, E > (2v-l)(v-1 + 3(v4-I) 12)2

3v

(for v =5, b = 10 the design is A-optimal).

k 4: Take t =1 for any v >4.

Mi If v =4, E > .9999

(for v = 4, b 4s, s = 1,... ,5 the design is A-optimal).

(ii) If 5 < v < 9 the design is A-optimal.

(iii) If v > 10~, E > (3v-l)(v-1 + (v+1) 12)2
2

4v (v+l)

k=5: Take t=lI for any v >5.

g(1,z)
* Ci) If 5 < v < 9, E > (10 where

2 (,0 2

g(x,z) =(v-i) 2(20v - (x+z)(4v+5) + x 2+ 2xz + z-

2 -1+ (5(x+z) - (x + 2xz + z)) ,and

12(v-1) (2v+1) 1/2 _ (v+2)(4v+2)
z(2v+M)v-4)

(for v = 9, b =18s, s -1,... ,5 the design is A-optimal).

(ii) If 10 <v < 16 the design is A-optimal.

(iii) If v > 17 E > (v-1)v-1 + (v+l) 12)2

5v 2(v+2)

M,:.t~ 6--A
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k = 6: Take t 1 1 if v > 9, take t - 2 if 6 < v < 8.

M If 6 < v < 8, E > g(lz 1) where
g(2,O)

g(xz) = (v-l) 2(30v - (x+z)(5v+6) + x2 + 2xz + z) - I

+ (6(x+z) - (x 2+2xz+z)) - , and

= 5 20(v-l)(3(v+3))i/2 3(v+3)(5v+3)
3 (5v+3) (3v-11)

g(l,z I )
(ii) If 9 < v < 16, E > ) where g and z are

g(l,O) 1
as defined in (i) above.

(for v = 16, b = 48s, s = 1,...,6, the design is A-optimal).

(iii) If 17 < v < 25 the design is A-optimal.

1(v+i)/2) 2
(iv) If v > 26, E > (5v-l)(v-i +

6v 2 (v+3)

k - 7: Take t = I if v > 13, take t 2 if 7 < v < 12.
g(l,z I ) I

(i) If 7 < v < 12, E > , where
g(2,O)

g(xz) = (v-l) 2 (42v - (x+z)(6v+7) + x2 + 2xz + z) I

+ (7(x+z) - (x 2 + 2xz + z))- , and

= 3 15(v-)(6v+4)2 - (v+4)(6v+4)1 ( 6v+4) (2v-7)

(ii) If 13 < v < 25, E > g(l,z1) where g and z are as
g(1,O) ,weegad aea

defined in () above.

(for v = 25, b = lOOs, s = 1,...,7, the design is A-optimal).

(iii) If 26 < v < 36 the design is A-optimal.

(iv) If v > 37, E > (6v-1)(v-i + (v+l)/2 )2

7v2 (v+4)

*i p . . . . .. ~*.~ * .i ;/ 4< :. -4 -. " " ,',- .' ,. , . .: ,4 , ,'.-.- -" , ., '..



k =8: Take t 1 if v > 19, take t = 2 if 8 < v < 18.

Mi If v 8 or 9 the design is A-optimal.

g( ,z 1)
(ii) if 10 ~-v < 18, E g(2,0) where

g(x,z) (v-i) 2(56v -(x+ z) (7v+8) + x 2+ 2xz + z) 1

+ (8(x+z) - 2x + 2xz + z)) -l and

=742(v-1)5(7v+5)) 1/- 5(v+5)(7v+5)Z, 7 5(7v+5)(5v-17)

g( ,z1) a e a(iii) if 19 < v < 36, E g> ,) wer n

defined in (ii) above.

(for v =36, b =i18s, s = 1,... ,8, the design is A-optimal).

(iv) If 37 <v < 49 the design is A-optimal.

M If > 50 E >(7v-.) (v-i + (v+1) 1/2 )2

8v 2(v+5)

k =9: Take t =1 if v > 25, take t =2 if 9 < v < 24.

Mi If v = 9, E > .9999

(for b =36 the design is A-optimal).

(ii) If 10 < v < 12 the design is A-optimal.

(iii) if 13 < v < 24, E > g(l,z1) whr

g(xz) = (v-i) 2 (72v - (x.z)(8v+9) + x 2 + 2xz +z)1

+ (9(x+z) - (x 2+ 2xz + z)) -1 and

=, ll2(v-l)3(4v+3)) . 12(v+6)(4v+3)

(for v =13, b =26 the design is A-optimal).



(iv) If 25 v - .; .r ind 7 are

as defined in (iii) ibt.v.

(for v 49, b = 294s, s =, the design is A-optimal).

(v) If 50 v 64 the design is A-optimal.

1/2)2

(vi) If v > 65, E > (8v-l)(v- I + 
(v+1) )2

9v2 (v+6)

k = 10: Take t = 1 if v • 33, take t = 2 if 10 < v < 32.
g(2,z 2 )

(i) If 10 < v < 12, E - where
_ _ _g(2,0)

g(x,z) = (v-) 2(90v - (x+z)(9v+10) + x2 + 2xz + z)
- I

+ (lO(x+z) - (x2 + 2xz + z))-1, and

1/2
504 (v-l) (5(9v+5)) 1 40(9v+5) (2v+5)z 2 5 (9v+5) (5v-19)

(ii) If 13 < v < 16 the design is A-optimal.

g(1,z1 )

(iii) If 17 < v < 32, E > g(2,0 1 where g is as
_ _ - ~g(2,0) whr gisa

defined in (i) above, and

72 (v-1) (7 (9v+7)) 1/2 7(v+7)(9v+7)
z 7(9v+7)(7v-23)

g(l'z I)(iv) If 33 < v < 64, E > g(1,z) where g and z are
-- - g(1,0) '

defined as in (iii) above.

(for v = 64, b = 448s, s = 1,... ,10, the design is A-optimal).

(v) If 65 < v < 81 the design is A-optimal.

* (vi) If v > 82, E > (9v-1)(v-1 + (v+l) /2)
2

S-10v 2 (v+7)

41
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The bounds for the efficiencies are generally extremely good. The only

exception to this is for extreme large values of v, which should not come as

a surprise. But even there the values seem to be acceptable, unless k is very

small. To illustrate this we give some of the values for large v explicitly.

v = 100 v = 500 v = 1000

k = 3 E > .7888 E > .7241 E > .7077

k = 6 E > .9602 E > .9003 E > .8823

k = 10 E > .9991 E .9648 E > 9492

p ~*~*. '~..*... p. ~*, .. *P *~i-
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4. DISCUSSION AND CONCLUSION.

Theorem 2.1 provides us with a tool to determine the parameters of the

best augmented BIBD, either in a fixed class Do(v,b,k) or, when starting

with a BIBD, in one or more classes of the form D0 (v,b,k+t). These designs

are very appealing for at least two reasons. As members of the class of

BTIB designs they possess all the desirable features of designs in this class.

In addition, much is known about questions concerning their existence and

construction, since these questions are equivalent to those of the correspond-

ing BIBD's, a subject that has received its share of attention in the literature.

Since using the best augmented BIBD gives, except for some extreme cases,

a very high efficiency (in fact many of the listed designs in section 3, al-

though not marked as such, may very well be A-optimal) we strongly recommend

the use of these designs.
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